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Traditional optical design has long been driven by measurement rather
than application. Computational cameras have emerged as a means
to design domain-specific cameras with a co-design of the system’s
optics and image processing algorithms, yet many approaches are
designed based on heuristics or proxy metrics on the point spread
function. Ideally, the optimal computational camera for a given task
requires the joint optimization of parameters from both the image
forming optics and sensor-data processing algorithm in an end-to-
end fashion. Following the success of machine learning-based image
processing algorithms, Sitzmann et al. propose a framework in which
the design of a single lens imaging system is learnt in an end-to-
end fashion using a high-resolution natural scene image dataset and
a differential image formation model. In this report, we utilize the
proposed end-to-end optics and image processing framework to learn
the design for achromatic extended depth of field imaging system.

computational imaging | end-to-end optimization

1. Introduction

Modern imaging technologies have given us powerful capa-
bilities to capture the world on devices ranging greatly in
form factor, from handheld to millimeter-length. Moreover,
with recent advances in image processing algorithms, modern
vision systems can accomplish a variety of tasks in challenging
environments, such as low-lighting (1) and poor weather (2).
However, while image processing algorithms have been opti-
mized for specific tasks, commercial optical design has largely
focused on improving measurement through the reduction of
aberrations i.e. deviations from Gauss’s linear model of optics
(3). This general-purpose design approach has been successful,
yet leaves an important unanswered question: What is the
optimal camera design for a given task?

Computational cameras (4), domain-specific camera sys-
tems designed with the joint consideration of both optics and
computational processing techniques to reconstruct a final
image, have emerged over the last two decades to address
this question. Raskar et al. rapidly flutter the camera’s
shutter open and closed during an exposure with a binary
pseudo-random sequence, thereby preserving high frequency
details that would have otherwise been lost in a single long
exposure and allowing the corresponding deconvolution to
become a well-posed problem (5). Cossairt et al. introduce
a custom designed diffuser into their camera system as to
engineer a depth-invariant point spread function (PSF) to
enable extended depth-of-field (EDoF) imaging. However,
these approaches are either heuristic or use some proxy metric
on the PSF rather than considering the image quality after
post-processing. Ideally, the optimal computational camera
for a given task requires the joint optimization of parameters
from both the image forming optics and sensor-data processing
algorithm in some end-to-end fashion.

Sitzmann et al. (6) proposed a framework in which this
exact end-to-end optimization of optics and image processing
could be achieved for a singular refractive or diffractive opti-
cal element. Following the success of machine learning-based
image processing algorithms that utilize large image datasets
for parameter optimization, the end-to-end framework jointly
optimizes optical parameters and image reconstruction param-
eters using such datasets by minimizing the deviation between
the true and reconstructed images. The optimization is made
possible through the development of a fully differentiable wave
optics image formation pipeline and stochastic gradient meth-
ods. An overview of the framework can be seen visually in
Figure 1.

In this report, we outline the methods used by Sitzmann et
al. and attempt to reproduce their results. Our objectives are:

• To re-implement the proposed end-to-end optimization
framework for a singular optical element system. ∗

• To validate the framework in simulation for the applica-
tions of achromatic imaging and achromatic EDoF.

2. End-to-end Optimization of Optics and Reconstruc-
tion

A. Image Formation Model. To build the image formation
model, a wave-based model that accounts for diffraction and
wavelength-dependent effects, derived from Fourier optics (7),
is utilized.

A.1. Wave-based point spread function. A single refractive or
diffractive optical element, such as a thin lens, imparts phase
delays to an incoming wave field proportional to its thickness
h(x, y):

ϕd(x, y) = 2π∆n

λ
h(x, y) [1]

Here, λ is the wavelength in the input field and ∆n is the
difference in refractive index between air and the material of
the optical element.

A wave field Uλ(x, y, z = 0) with amplitude A(x, y) and
phase ϕ(x, y) incident on the optical element will then be
affected as follows:

Uλ(x, y, z = 0) = A(x, y)ej(ϕd(x,y)+ϕ(x,y)) [2]

After passing through the optical element, the wave prop-
agates to the image sensor location a distance z away. This
propagation can be approximated by a Fresnel propagation

∗Re-implemented source code is available at https://github.com/Way-Yuhao/End2End-Optics

1–7



Fig. 1. An end-to-end optics and image processing framework. A large image dataset of natural scenes is passed through a fully differentiable wave-optics model
by convolving a batch of images with a simulated PSF p of the current optical system. A sensor model is simulated by adding sensor read noise eta. Computational
image reconstruction is achieved by solving a Tikhonov-regularized least-squares problem with the optical image formation model G. Finally a differentiable loss L, such as
men-squared error with respect to the ground-truth image, is defined on the reconstructed images. The error can then be backpropagated all the way back to the optical
element. Credits: Image from Sitzmann et al. (6)

operator, which is reasonable given that we are within the
paraxial regime i.e. z >> λ. Thus, the wave field at the sensor
plane is:

Uλ(x, y, z) = ejkz

jλz

∫∫
U(x, y, 0)e

jk
2z

(
(x−x′)2+(y−y′)2

)
dx′dy′

[3]
Here, k = 2π/λ is the wavenumber.

Finally, to derive the point spread function (PSF) p(x, y)
of the overall system, we can simulate an input wave field that
corresponds to a single point source. For a simple PSF with
no depth dependence, we can place the point source at optical
infinity, which corresponds to an input wave field that is a
plane wave i.e. setting phase ϕ(x, y) = 0. this leads to the
following result:

pλ(x, y) ∝
∣∣∣F{

A(x, y)ejϕd(x,y)e
jπ
λz

(x2+y2)
}∣∣∣2

[4]

We can approximate a depth dependent PSF by simulating an
spherical input wave field at a distance d with the appropriate
curvature i.e. setting phase ϕ(x, y) =

√
(x2 + y2) + d2. In

this case, the PSF is no longer a shift-invariant convolution.
Nevertheless, for sufficiently large distances between the scene
and the optical element, a shift-invariant formation model may
still be a good approximation (8), although off-axis aberrations
like coma will be neglected.

A.2. From PSF to image. Assuming the PSF is shift-invariant
operation, the image at the sensor plane can be obtained
by means of a convolution. Accounting for the wavelength
sensitivity κc of the sensor for each of the color channels R,
G, B, we find:

Ic(x, y) =
∫

(Iλ ∗ pλ)(x, y)κc(λ)d [5]

Here, Iλ is the original wavelength dependent scene, and c
denotes the color channel.

A.3. Sensor. The image Ic(x, y) formed on the sensor is inte-
grated over the sensor pixels and corrupted by noise, yielding
a measurement yc:

yc = S(Ic) + η [6]

where S is the pixel integration and sampling operator and
η ∼ N (0, σ2) is Gaussian read noise.

A.4. Image reconstruction. The final stage the proposed model
is image reconstruction. We reconstruct the estimate Ĩc of
the source image Iλ by solving the Tikhonov regularized least-
squares problem:

min
{Ĩ}

||yc − S(Ĩc ∗ pc)||22 + γ||Ĩc||22 [7]

where Ĩ is the unknown variable, pc is the PSF pλ integrated
over the wavelength sensitivity κc in a narrow band around the
RGB wavelengths, and γ > 0 is an (optimized) regularization
parameter.

When the PSF discretization size matches the sensor pixel
size, the pixel integration operator S matches the identity.
Then, the optimization problem in Equation 7 can be solved in
closed form, and the solution is given as Wiener filtering under
the simplifying assumption of circular boundary conditions,
which we can approximate by symmetric padding of yc. the
Wiener filtering operation is given by:

Ĩc = F−1
{

p̄c
∗

|p̄c|2 + γ
F{yc}

}
[8]

where p̄c = F{pc} is the optical transfer function, and mul-
tiplication and division are performed element-wise. When
the pixel size is larger than the discretization of the PSF, we
can use a fixed number of conjugate gradient steps to solve
Equation 7.

B. End-to-end Optimization Framework. We develop a frame-
work for optimizing the end-to-end pipeline in Pytorch. The
optimization is conducted using the stochastic gradient descent
method. Note that each stage of our model in Subsection A is
expressed as a differentiable module. The only optimization
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parameter in the pipeline is the optical height map, h. The
list of hyperparameters include the optical element size, sensor
pixel size, propagation distance z, and sensor read noise level.

We optimize our model on a dataset of RGB images. The
optimization variables in the optical element and reconstruc-
tion method are optimized with respect to the mean-square
error (MSE) loss over the dataset:

L(Ĩc, Iλ)MSE =
∑

c∈{R,G,B}

||Ĩc − Ic|| [9]

where Ĩc denotes the reconstructed image, and Iλ denotes
the ground truth image. To further encourage smoothness on
the height map, we introduce Laplacian L1 regularize on the
height map to encourage sparse solution:

R(H) = ||Laplacian(H)||1 [10]

Where H denotes the height map of the optical element. The
final loss term used in our pipeline is a weighted combination
of MSE loss and Laplacian L1 regularization:

L(Ĩc, Iλ, H)total = L(Ĩc, Iλ)MSE + αR(H) [11]

Where α is a scaling constant for regularizer. We set α in the
scope of this report.

B.1. Optimization algorithms.. We experienced with several op-
timization algorithms extensively used in the deep learning
community. We find that for this particular task, stochastic
gradient descent (SGD) (9) performs significantly better than
other dynamic optmization methods, such as AdamW. (10).

C. Feasibility Constraints of Fabrication. Developing the pro-
posed optimization framework in a way that is compatible with
real-world manufacturing constraints is of utmost importance.
While it is possible to represent the optical element via a dis-
cretized height map h using a standard basis, there are known
basis of representations that are compatible with the manu-
facturing requirements for various types of optical elements.
Diffractive optical elements (DOEs), flat (thin) lenses that rely
on small phase delays induced by ultra-small features etched
in typically by a photolithography process, can be represented
using a Fourier basis. Refractive optical elements, such as
concave or convex lenses, can be represented using Zernike
polynomials (11). By representing the height map h as a sum
of weighted Fourier basis functions or Zernike polynomials
up to a certain order, one can often directly plug them into
manufacturing machines to produce the appropriate element.
For the purpose of this report, we only utilize the Fourier basis
representation that is appropriate for manufacturing a DOE.
Finally, to address manufacturing tolerances, random uniform
noise is added to the height map h during optimization.

3. Datasets and Implementation

A. Datasets. To train and evaluate our model, we use the
DIV2K dataset (12). The datasets consists of RGB images
with a large diversity of contents. The DIV2K dataset is
further divided into train and validation sets, each of which
consists of 800 and 100 samples, respectively. Notice that the
images do not have corresponding depth maps, please refer to
Subsection C on how we assign depth maps.

B. Data Pre-processing. To pre-process input data, we read
input images and normalize pixel values to the range of [0,
1], since we’re using deep learning frameworks that generally
expect input tensors to be normalized. Next, to increase
size of training data and promote generalization, we apply a
random crop to sample an image patch of resolution 512 × 512.
No further data augmentation is performed. We feed the
aforementioned image patch to our end-to-end framework, and
treat the same input image patch as the ground truth image.

C. Depth Map Generation. As mentioned previously, the
DIV2K dataset does not contain depth maps for sample im-
ages. We need to arbitrarily assign depth maps for each image.
To do that, we randomly select a depth from one of five depth
options: 0.5 m, 0.67 m, 1 m, 2 m, and 1000 m. We use 1000 m
as a proxy for optical infinity. We use 1000 m and optical
infinity interchangeably in this paper. Then, the randomly
sampled depth is applied to the entire image patch, effectively
placing the two-dimensional planar image plan at that given
depth. Such depth map assignment is consistent with the
implementation described in the original paper (6).

4. Experiments

To evaluate our end-to-end model, we conduct two synthetic
experiments, at increasing difficulty. For both experiments,
the simulation parameters above are taken from the original
paper (6), subject to memory constraints. Note that our
optimization parameters differ from (6).

A. Simple Achromatic Lens. As an initial evaluation for our
framework, we build a simple lens model that can focus light at
optical infinity. Simple denotes that there is no deconvolutional
filter involved and that the loss function (see Eq. (11)) is simply
calculated between the simulated image output at the sensor
level and the ground truth. Achromatic means that we’re
encouraging the optical element to be spectrally invariant, i.e.,
being able to focus light across multiple wavelengths.

A.1. Optimization Parameters. We use stochastic gradient descent
(SGD) with momentum = 0.5. The initial learning rate is set
to 5e − 1 and is maintained throughout training. We use a
batch size of 8.

A.2. Simulation Parameters. We set aperture diameters to 5 mm,
and sensor distance to 25 mm. We set the refractive indices
of the optical elements to be 1.4648, 1.4599, and 1.4568 for
each color channel, where the wavelength for each channel is
460 nm, 550 nm, 640 nm, respectively. We use a wave resolution
of 2496 × 2496, and a sample interval of 2µm. Finally, we
use a height tolerance of 20 nm. Finally, the Gaussian sensor
read noise variance σ2 is sampled from a uniform distribution
between 0.1% and 2%.

Contrary to the process introduced in Section 3C, all depth
maps in the simple achromatic lens experiment are assigned to
1000 m, since we are not encouraging this model to be depth-
invariant. Moreover, in contrast to (6), we find that a standard
basis representation for optimizing the height map of the opti-
cal element fails to converge to a solution. Instead, we explore
utilizing a Fourier basis representation for optimization.

A.3. Results. When using a standard basis of representation of
the height map, we fail to converge to a reasonable solution
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Fig. 2. Failure result of using a standard basis of representation of the height
map element. When using a standard basis to represent the height map, the training
loss diverges starting from epoch 1. As the result, the model fails to converge to a
reasonable PSF. The insert shown on the right is the PSF at epoch 1, which mainly
consists of noise and hardly any structured components.

Fig. 3. Point Spread Function (PSF) of the optimized Simple Achromatic Lens.
By using Fourier basis to represent the optical element, the model converges and the
optimized model is able to focus light at infinity, evident in the compactness of one-
dimensional PSF (left) and two-dimensional PSF (right). infinity, the model performs
best in the red channel, and progressively worse in green and blue. Note that the
height map has a low-pass filter, forcing frequencies above 50% to be zero.

Fig. 4. Sample outputs from the optimized Simple Achromatic Lens. The
optimized height map corresponding to the PSFs in Figure 3 is shown on the right.
This height map produces output images shown on the left, where each image has a
uniform depth map of optical infinity.

for a variety of optimization parameters. In fact, as shown in
Figure 2, the training loss appears to diverge.

To combat this divergence, we suspect a representation
with fewer high frequency components will help aide training
convergence, effectively acting as an additional smoothness
prior. We utilize a Fourier basis representation where we set
50% of the highest frequency Fourier coefficients to zero. This
model successfully converges to an adequate solution, and
the optimized PSF can be seen in Figure 3. Notice that at
optical infinity, this model focuses light in the red wavelength
the best, and then progressively worse and the wavelength
deceases towards green and blue. This is consistent with the
two dimensional PSF, where the red and green airy disk is
more visible. The PSFs shown in Figure 3 is produced by

Fig. 5. Outcome of removing low pass filter on height map in the Achromatic
Simple Lens model. By removing the low-pass filter on the height map and re-training
the model, the model achieves better convergence. Notice that the model is now able
to utilize high-frequency components to construct a sharp circular boundary (right).
The resulting PSFs (left) have higher peaks than those from the model with a low-pass
filter (shown in Figure 3 and 4).

optimized height map element, whose height map is shown in
Figure 4. Intuitively, the optimized height map resembles a
profile that matches a Fresnel lens. Sample formed images by
the optimized optical element are also shown in Figure 4. Note
that all images are placed at optical infinity. Observe that our
Achromatic Simple Lens model produces sharp images at this
particular depth, however, a moderate amount of chromatic
aberrations is present, since this model is comparatively worse
at focusing light in the blue wavelength at optical infinity.

We postulate that this Fourier basis representation actu-
ally helps stabilize training irrespective of removing higher
frequency components. To test this conjecture, we remove
the low pass filter on the height map and allow all Fourier
coefficients to have a non-zero value. Interestingly, easing this
smoothness prior actually improves the performance of the
model, as shown by the PSF in Figure 5. This suggests that
the Fourier representation itself leads to faster, more stable
training and better convergence.

B. Achromatic Extended Depth of Field (AEDoF). We present
a second experiment that is simultaneously optimized for two
objectives: (1) a PSF is spectrally invariant (achromatic),
and (2) a PSF that is depth invariant (Extended Depth of
Field). Notice that our set of objectives differ from that for
the Simple Achromatic Lens mentioned in Subsection 4.A, and
that lead to a number of main differences between the two
models. First, we randomly assign an uniform depth map for
each input image crop (see Subsection 3.C for details). Second,
the AEDoF model now consists of a deconvolutional layer to
perform image reconstruction. Next, we perform additional
hyper-parameter tuning for the AEDoF model, which results
in different optimization parameters. Additionally, some of the
simulation parameters differ between the two models in the
original paper (6), which is accounted for in our experiment.

B.1. Optimization Parameters. We use stochastic gradient descent
(SGD) with momentum = 0.5. The initial learning rate is set
to 5e − 1. We use a StepLR scheduler (13) with step_size =
1 and gamma = 0.8 to decrease learning rate over time. We
use a batch size of 4 due to memory constraint.

B.2. Simulation Parameters. We set aperture diameters to 5 mm,
and sensor distance to 35.5 mm. We set the refractive indices of
the optical elements to be 1.4648, 1.4599, and 1.4568 for each

4 | Kabra & Liu



Fig. 6. The optimized Height map of the AEDoF model. The corresponding sample
PSFs and sample outputs are shown in Figures 7 and 8.

color channel, where the wavelength for each channel is 460 nm,
550 nm, 640 nm, respectively. We use a wave resolution of
1248 × 1248, and a sample interval of 4µm. We use a Fourier
basis representation and set the 37.5% highest frequencies
to zero. A height tolerance of 20 nm is used. Finally, the
Gaussian sensor read noise variance σ2 is sampled from a
uniform distribution between 0.1% and 2%.

B.3. Results. The optimized height map element for AEDoF is
shown in Figure 6. Figure 7 shows the PSF of the AEDoF
model. The 1-D PSFs are most compact at depth = 0.5 m, and
then gets progressively worse as distance increases towards
infinity. However, the PSFs are still moderately compact at
optical infinity, suggesting that the PSF does not significantly
alter with depth. This observation is consistent with the PSF
stack shown the right of Figure 7, where the shape of the PSF
does not change drastically between 0.5 m and infinity.

Figure 7 shows sample outputs of the same input when
placed at different depths. Notice that at farther depths like
2 m and 1000 m, there exists purple fringing in the output,
suggesting the existence of chromatic aberration. At closer
depths, the output is marginally sharper and free of purple
fringing. From visual inspection of the output, although the
model performs the best at 0.5 m, the reconstructed quality
does not drastically degrade as depth increases towards in-
finity, suggesting a degree of depth invariancy in our model.
Further, since the chromatic aberration is minimal for a single-
component optical system, we claim that our optimization
results in a model that achieves AEDoF.

B.4. Ablation Study. In order to further evaluate the effectiveness
of our optimization scheme, we train a model that is only opti-
mized for focusing images placed at infinity. To do that, we set
the depth map of all training image patches to be 1000 m. We
call this model Achromatic Shallow Depth of Field (ASDoF).
Note that the only difference between ASDoF and AEDoF
(referenced in Subsection 4.B.3) is that AEDoF is only trained
on images placed at infinity, while ASDoF is trained on images
across all five depths. All other components and parameters
(optimization and simulation) are the same between ASDoF
and AEDoF. Comparing to Achromatic Simple Lens (Sub-
section 4.A), ASDoF has the sample objective (achromatic
imaging at infinity), but ASDoF has some added components
and different parameters, such as the deconvolution layer.

Figure 10 shows a comparison between outputs from

AEDoF and ASDoF. Notice that while AEDoF produces rel-
atively sharp images across all depth ranges, ASDoF only
produces significantly better outputs at 1000m, but the image
quality drastically degrades when at all other depth ranges.
This suggests that our the AEDoF model is effectively opti-
mized to be depth-invariant, while ASDoF is solely optimized
for a singular depth at infinity. Next, observe that both models
achieve achromaticity given the moderate amount of chromatic
aberration. Further, the outputs from AEDoF have slight pur-
ple fringing (most visible at 1000 m), while those from ASDoF
have slight green fringing (most visible at 0.67 m and 0.5 m).
This indicates that the two models prioritize different channels.
Specifically, the worst-performing channel for AEDoF and AS-
DoF are red and green, respectively. Notice that there is no
mechanism in our training scheme that encourage the two
model to prioritize different wavelengths, and we believe that
randomness in initialization and subsequent gradient descent
steps likely lead to different converges between the two models.

The corresponding one-dimensional PSFs of the two models
are shown in Figure 9. Observe that the peak intensity for
ASDoF (at optical infinity, maximum intensity = 0.25) is
significantly better than PSFs for AEDoF for at any depth
(maximum intensity = 0.16). However, at 1 m and 0.5 m, the
PSFs of ASDoF have lower peaks than those from AEDoF.
The two observations also indicate that AEDoF is significantly
more depth invariant than ASDoF.

5. Discussion

In this report, we have implemented the end-to-end optics
and image processing pipeline proposed by Sitzmann et al.
(6). We successfully utilized this pipeline to learn the height
map for a diffractive optical element and subsequent post-
processing image reconstruction algorithm that can achieve
achromatic imaging, and achromatic extended depth-of-field
(EDoF) imaging.

Beyond the work shown in this report, the same end-to-end
framework has been extended for a variety of applications.
In the same work of Sitzmann et al., the authors used the
end-to-end framework to learn the optical element and image
reconstruction algorithm for a super-resolution imaging system.
Here, the optimized model achieves super-resolution by multi-
plexing sub-pixel-shifted image copies on the sensor, and using
the known optimized PSF during image reconstruction. Wu et
al. (14) learnt the optimal phase mask and reconstruction al-
gorithm for single frame, single viewpoint, passive 3D imaging.
A feature of this work, although proposed by earlier authors
including Sitzmann et al., is the use of a deep convolutional
neural network for image reconstruction. Tseng et al. (15)
optimize compound optics together with hardware and soft-
ware image post-processors. To do this, they modify the PSF
simulation proposed in Sitzmann et al. to a neural network-
based model that has been trained predict spatially-varying
PSFs and vignette given a set of optics parameters such as
surface thicknesses, intervals, refractive indices, and surface
parameters for every element. Finally, Hinojosa et al. (16)
optimized an optical element and reconstruction algorithm to
perform privacy-preserving human pose estimation. This work
offers an interesting paradigm for the end-to-end optics and
image processing framework – namely, that it optimizes an
optical element to contain enough abberations as to preserve
privacy while still being able to form an image that can be
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Fig. 7. The PSFs for the AEDoF model. The diagram on the left shows that the PSFs are most compact at 0.5 m and maintains the compactness as depth extends to infinity.
The two-dimensional PSFs for each depth are shown on the right.

Fig. 8. Sample outputs from the AEDoF model. As the depth of the input image increases from 0.5 m to 1000 m, the image quality does not drastically degrade, indicating
that the model is fairly depth invariant. Although, as distance increases, a slight loss of sharpness and introduction of purple fringing is visible.

Fig. 9. A comparison of the PSFs of the AEDoF model and the ablation ASDoF model. While the PSFs at all three depths are compact for AEDoF, ASDoF has the
most-compact PSF at infinity, but the PSFs flatten considerably at other depths. This indicates that AEDoF is optimized for extended depth of field, while ASDoF is only
optimized for focusing at optical infinity.
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Fig. 10. Sample outputs from AEDoF and ASDoF models. AEDoF produces fairly sharp images across all depth ranges, with a slight loss of sharpness and addition of
purple fringing towards 1000 m. In contrast, ASDoF produces the sharpest result at 1000 m, but the image quality quickly degrades as depth decreases.

used to predict human pose.
Overall, end-to-end optics and image processing offers an

exciting framework to be utilized when designing application-
specific vision systems. Today, such systems rely not on the
raw measurement on the sensor, but the final post-processed
result for a particular application. Therefore, by jointly opti-
mizing both the optics and image processing pipeline, these
systems can learn new methods of encoding visual cues that
can then be decoded to reconstruct a final result. We hope that
future works continue to modify and add to the differentiable
optics model, for example by adding multiple sensors, expo-
sure times, shutter speeds, or even novel optical elements such
as metamaterials (17), which will enable new optimal vision
systems to be learnt for applications beyond those discussed
in this report.
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